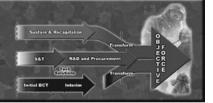
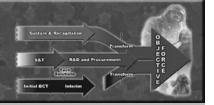
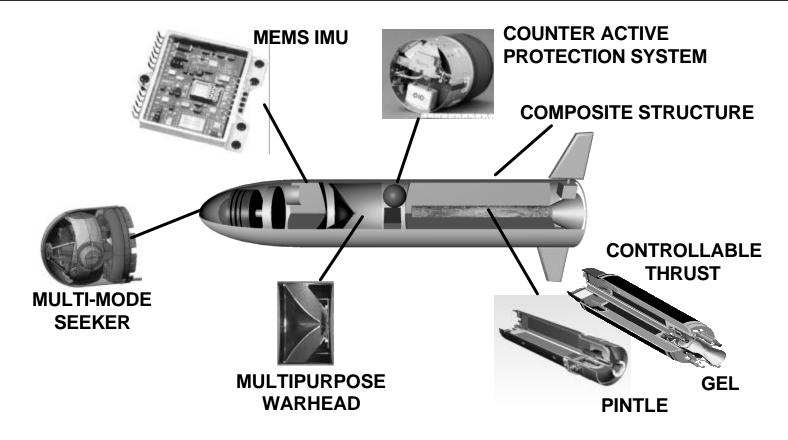


Missile Technology Drivers For The Future

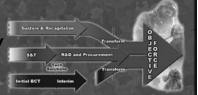


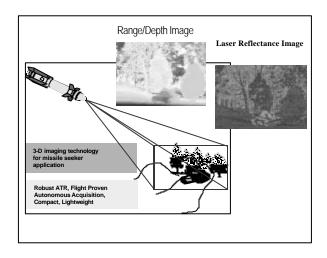

Performance Requirements

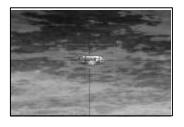


- Defeat T-90 PIP 1, Engage Critical High Value Targets
- Counter Active Protective System
- Day/Night Adverse Weather
- Fire & Forget and Alternate Mode Precision Hit
- Overmatch Lethality
- Increased Standoff Range
- Min Smoke, Insensitive Munition
- ECM Resistant
- Automatic Target Recognition

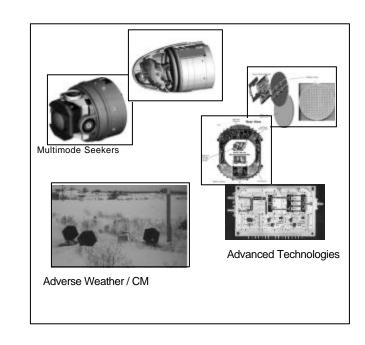
Technology Enablers



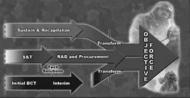

Leverage Technologies Across Government & Industry



Multi-Mode Seeker Technology



Increase capability to detect, classify and identify targets in multiple environments and conditions.

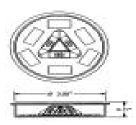

Advanced Autotracker Technology

- I²R
- RF
- SAL
- LADAR

Micro-Electromechanical System (MEMS) IMU

- MEMS are very small electromechanical devices that can be fabricated in foundries used to make solid sate integrated electronic circuits
 - Flywheels, gears, gyroscopes, accelerometers
- MEMS provide a potentially inexpensive way to make very small IMUs/INSs for soldier / missile / aircraft applications
 - Leverages electronic industry's economy of scale for price reduction
- Easily integrated into electronic systems

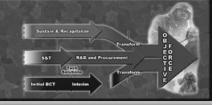
Honeywell HG-1700 RLG IMU


WEIGHT: 2 lbs
VOLUME: 33 cu in
POWER: <8 Watts
COST: \$10 K

Litton LN-200 IFOG IMU

WEIGHT: 1.5 lbs
VOLUME: 29 cu in
POWER: 10 Watts
COST: ~\$10 K

Accuracy: 1 /hour



MEMS IMU

WEIGHT: ~0.6 lbs
VOLUME: <10 cu in
POWER: 3 Watts
COST: \$1.2 K

Controllable Thrust Propulsion

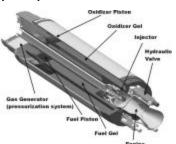
Vision: Survivable, Controllable Propulsion for Army Missiles

- Multiple targets
- Multiple launch platforms
- Extended range
- Flexible Deployment

Operational Capabilities

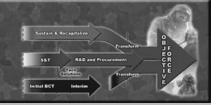
- Weapon system flexibility
- On-the-spot selection of weapon system capability

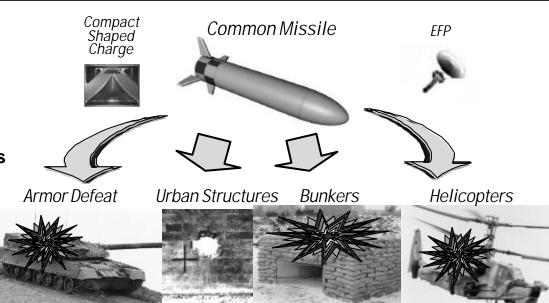
Affordability


- Reduce the number of systems required for entry forces
- Reduce Army logistics burden (One system for multiple applications)

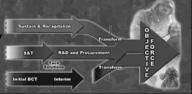
Technology Approaches

- Solids Propulsion Active or Passive
 - Variable Area Nozzle
 - Pintle Controlled Solid
 - Less Sensitive Munition


- Gel BiPropulsion Active Control
 - Face Shutoff Engine (FMTI)
 - Vortex Engine
 - Low Toxicity Fuels
 - Inherently IM


Provides Propulsion Technology for a New Class of Weapon Systems

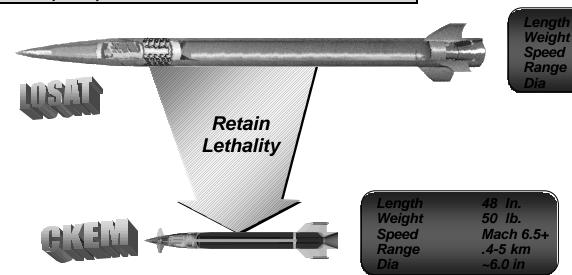
Multi-purpose Warheads

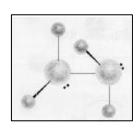

- Advanced technology for:
- Lighter compact SC anti-armor warheads, 50% shorter with current or better anti-armor performance.
- Multi-purpose capability against armor, bunkers, urban targets (masonry walls etc.), helicopters and personnel targets.
- Increased performance by advanced EFP warheads for high performance (25% or greater penetration increase) against armor

- Payoff:
- Increased maneuverability and range of munitions
- Increased munitions lethality over a broader spectrum of targets
- Lighter munitions, less required munitions, faster deployment

Hypervelocity Technology

117 In.

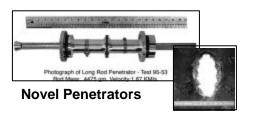

175 lb.


Mach 4

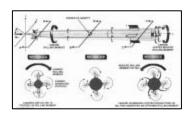
1-4 km

6.4 in

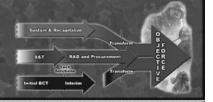
THE CHALLENGE: The next generation KE missile must be small, fast, lethal and maneuverable.



Advanced Propulsion



Control Actuation System Technology

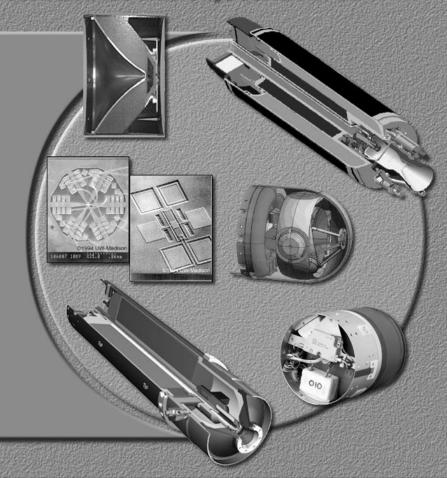

IMU

Aerodynamics

Summary

Emerging Technologies Will Enable The Objective Force

SMARTER


SMALLER

LIGHTER

MORE LETHAL

AUTONOMOUS

AFFORDABLE

